全國(guó)咨詢(xún)/投訴熱線:400-618-4000

首頁(yè)常見(jiàn)問(wèn)題正文

Python數(shù)據(jù)分析與應(yīng)用:文本預(yù)處理

更新時(shí)間:2022-08-26 來(lái)源:黑馬程序員 瀏覽量:

IT培訓(xùn)班

  文本預(yù)處理一般包括分詞、詞形歸一化、刪除停用詞,下面針對(duì)文本預(yù)處理的流程進(jìn)行具體介紹。

  1.文本分詞

  文本分詞是預(yù)處理過(guò)程中必不可少的一個(gè)操作,它可以分為兩步:第一步是構(gòu)造詞典,第二步是分詞算法的操作。其中,詞典的構(gòu)造比較流行的是雙數(shù)組的trie樹(shù),分詞算法常見(jiàn)的主要有正向最大匹配、雙向最大匹配、語(yǔ)言模型方法、最短路徑算法等。

  目前文本分詞已經(jīng)有很多比較成熟的算法和工具,在網(wǎng)上可以搜索到很多,本書(shū)使用的是NLTK庫(kù)和jieba庫(kù),分別用作英文和中文的分詞操作。

  2.詞形歸一化

  基于英文語(yǔ)法的要求,文檔中經(jīng)常會(huì)使用單詞的不同形態(tài),比如live、lives(第三人稱(chēng)單數(shù))、living(現(xiàn)在分詞),另外,也存在大量意義相近的同源詞,比如able、unable、disability。如果希望只輸入一個(gè)詞,就能夠返回它所有的同源詞文檔,那么這樣的搜索是非常有用的。

  詞形歸一化包括詞干提取和詞形還原,它們的目的都是為了減少曲折變化的形式,將派生詞轉(zhuǎn)化為基本形式。例如:

  am,are,is-be

  cars,car's,car's-car

  不過(guò),詞干提取和詞形還原所代表的意義不同,前者通常是一個(gè)很粗略的去除單詞兩端詞綴的過(guò)程,而后者是指利用詞匯表和詞形分析去除曲折的詞綴,以返回詞典中包含的詞的過(guò)程。

  3.刪除停用詞

  刪除停用詞也是比較重要的,主要是因?yàn)椴⒉皇俏谋局械拿總€(gè)單詞或字符都能夠表明文本的特征,比如說(shuō)“the”“的”“你”“I”“他”等,這些詞應(yīng)該從文本中清除掉??梢栽诰W(wǎng)上下載一份中文或英文的停用詞表來(lái)作為去停用詞的參考。

分享到:
在線咨詢(xún) 我要報(bào)名
和我們?cè)诰€交談!